Particle Size-Specific Magnetic Measurements as a Tool for Enhancing Our Understanding of the Bulk Magnetic Properties of Sediments

نویسنده

  • Robert G. Hatfield
چکیده

Bulk magnetic properties of soils and sediments are often sensitive proxies for environmental change but commonly require interpretation in terms of the different sources of magnetic minerals (or components) that combine to generate them. Discrimination of different components in the bulk magnetic record is often attempted through endmember unmixing and/or high resolution measurements that can require intensive measurement plans, assume linear additivity, and sometimes have difficulty in discriminating a large number of sources. As an alternative, magnetic measurements can be made on isolated sediment fractions that constitute the bulk sample. When these types of measurements are taken, heterogeneity is frequently observed between the magnetic properties of different fractions, suggesting different magnetic components often associate with different physical grain sizes. Using a particle size-specific methodology, individual components can be isolated and studied and bulk magnetic properties can be linked to, and isolated from, sedimentological variations. Deconvolving sedimentary and magnetic variability in this way has strong potential for increased understanding of how magnetic fragments are carried in natural systems, how they vary with different source(s), and allows for a better assessment of the effect environmental variability has in driving bulk magnetic properties. However, despite these benefits, very few studies exploit the information they can provide. Here, I present an overview of the different sources of magnetic minerals, why they might associate with different sediment fractions, how bulk magnetic measurements have been used to understand the contribution of different components to the bulk magnetic record, and outline OPEN ACCESS Minerals 2014, 4 759 how particle size-specific magnetic measurements can assist in their better understanding. Advantages and disadvantages of this methodology, their role alongside bulk magnetic measurements, and potential future directions of research are also discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of the effect of particle size on the specific absorption rate of cobalt ferrite nanoparticles in a radio frequency magnetic field

Studies show that the size of magnetic nanoparticles has an important impact on their properties. So, the possibility of an optimal size for their use in medical applications has been reported. Therefore, in this study, cobalt ferrite nanoparticles were prepared using co-precipitation method  at 80°C; then the powder was annealed  in a furnace at 150, 200, 300, 400, 500 and 600°C to obtain nano...

متن کامل

An Overview of Cobalt Ferrite Core-Shell Nanoparticles for Magnetic Hyperthermia Applications

Cobalt ferrite nanoparticles (CoFe2O4) are well known for some distinctive characteristics such as high magnetic permeability and coercive force, good saturation magnetization, excellent physical, and chemical stability, which make them so attractive for magnetic storage, magnetic resonance imaging (MRI), drug delivery, optical-magnetic equipment, radar absorbing materials...

متن کامل

Size Reproducibility of Gadolinium Oxide Based Nanomagnetic Particles for Cellular Magnetic Resonance Imaging: Effects of Functionalization, Chemisorption and Reaction Conditions

We developed biofunctionalized nanoparticles with magnetic properties by immobalizing diethyle-neglycol (DEG) on Gd2O3, and PEGilation of small particulate gadolinium oxide (SPGO) with two me-thoxy-polyethyleneglycol-silane (mPEG-Silane 550 and 2000 Da) using a new supervised polyol route, described recently. In conjunction to the previous study to achieve a high quality synthesis and increase ...

متن کامل

Size Reproducibility of Gadolinium Oxide Based Nanomagnetic Particles for Cellular Magnetic Resonance Imaging: Effects of Functionalization, Chemisorption and Reaction Conditions

We developed biofunctionalized nanoparticles with magnetic properties by immobalizing diethyle-neglycol (DEG) on Gd2O3, and PEGilation of small particulate gadolinium oxide (SPGO) with two me-thoxy-polyethyleneglycol-silane (mPEG-Silane 550 and 2000 Da) using a new supervised polyol route, described recently. In conjunction to the previous study to achieve a high quality synthesis and increase ...

متن کامل

Chemical Synthesis of Nano-Crystalline Nickel-Zinc Ferrite as a Magnetic Pigment

The nano-crystalline nickel-zinc ferrite was prepared via chemical synthesis. Zinc nitrate, nickel nitrate, iron nitrate hydrate, citric acid and ethylene glycol were used as precursor materials. Crystallization behavior of the precursor was studied by X-ray diffraction (XRD). Nanoparticle phases can change amorphous to spinel ferrite depending on the calcination temperature and crystallite siz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014